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Brain-Machine Interface is a technology that allows people to control devices using only the bioelectrical signals from the brain. 

The challenge has been around since 1973, and the first experimental proof of the feasibility of the technology was given in 1988. 

However, the real worldwide interest was shown in the 21
st
 century. Currently, there are research laboratories and companies 

around the world offering research and products in the area. The technology allows recognizing various states of the human brain 

through brain signal processing. The applications so far included movement of the cursor, hands-free typewriter, wheelchair 

(robot) movement, and robot arm (prosthesis) movement, among others.  Here, an investigation is reported, in which Brain-

Machine Interface is used based on anticipatory brain potentials. The device controlled is a robotic arm. 
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1 INTRODUCTION 

 

The term Brain-Machine Interface refers to the use of brain 

signals to control external devices with signals produced by 

the brain alone. External devices could be home appliances 

such as a TV set, a wheelchair, arm prosthesis, or a robot, 

among other possibilities. The term comes from the term 

Brain-Computer Interface which was used by Vidal [Vidal 

1977]. His laboratory at University of California at Los 

Angeles (UCLA) was named Brain-Computer Interface 

Laboratory. Although the terms Brain-Computer Interface and 

Brain-Machine Interface are often used as synonyms, in this 

paper it is understood that Brain-Machine Interface (BMI) 

refers to applications beyond standard computer peripherals. 

Another term, Brain-Robot Interface (BRI) is used for brain 

control of special physical devices, namely robots. Therefore, 

in this paper it is understood that the relations between the 

above research areas is BCI  BMI  BRI, meaning that BCI 

includes BMI, which in turn includes BRI. For example, 

moving a screen cursor is not considered a BMI, and turning 

on/off a TV set is not considered a BRI. 

 

Brain-Computer Interface becomes appealing not only for 

research but for industry as well. Besides small companies, big 

companies have also strategies and investments in this area 

(Honda is an example). Governments and funding agencies are 

involved, a good example being the European Union FP7 ICT 

program. This program encourages research institutions and 

market oriented companies to collaborate in producing 

products for the market. 

 

Let us mention some of the milestones in Brain-Computer 

Interface research. EEG was first introduced by Berger [1929]. 

Possibility of controlling devices using EEG was mentioned 

by Vidal [1973], and he also demonstrated [Vidal 1977] the 

possibility of screen symbol movement using brain signals 

The EEG alpha rhythm was proposed to be used by Osaka 

[1984]. The first BMI, control of a physical mobile robot using 

EEG signals took place in Macedonia [Bozinovski et al 1988]. 

In 1988, the concept of mental prosthesis was introduced and 

event related potentials were used to write text on a computer 

screen [Farwell and Donchin. 1988]. The last decade of the 

20
th

 century gave theoretical advances [Keirn and Aunon 

1990], as well as experimental results, such as screen cursor 

movement [Wolpaw et al 1991]. The importance of digital 

signal processing in BCI was emphasized by McFarland et al 

[1997]. Alpha rhythm was again used as a mind switch [Craig 

et al, 1997]. An invasive approach, recording signals inside the 

brain rather than on the scalp, was introduced in the late 1990s 

[Chapin et al, 1988]. The development taking place in the 21
st
 

century will be addressed below in the text. 

 

Following is a description of a taxonomy of brain potentials, 

which considers the anticipatory brain potentials as a subclass 

of event related potentials. Then, after describing the CNV 

(Contingent Negative Variation) potentials, the experimental 

paradigm is described, which includes feedback, and which is 

called the CNV flip-flop paradigm. The device that will be 



controlled is a robotic arm. Behavior-based robot control 

architecture is used with behavior design for solving the well 

known Towers of Hanoi problem. Results of the experimental 

investigations are presented, with a defined anticipation-based 

BRI, i.e., more specifically, an expectation-based BRI.  

 

2 TAXONOMY OF BRAIN POTENTIALS 

 

In the 1970s, the understanding of the variety of brain 

potentials was depicted by a taxonomy that included 

background EEG and Event Related Potentials (ERP), which 

were also called Evoked Responses. The distinction among 

ERPs was described in [Vidal 1977]. According to that 

taxonomy, there are four types of ERPs:  

Sensory ERPs. Elicited by human sensors for light, audio, etc, 

as well as direct electrical stimulation. Such ERPs appear at 

short latencies, between 50ms and 100 ms. 

Motor ERPs. Voluntary motor movements, which may be 

found actually preceding a behavioral event. Examples are 

limb movement, eye movement, and phonation. 

Long Latency Potentials. Responses in latencies between 

250ms and 450ms. Usually related to cognitive processing 

related to the event. Most prominent is the P300 (positive 

potential at 300ms) potential.  

Artifacts. Appear because of movement of muscles, eye 

movements (EOG), heartbeat (ECG) and other potentials of 

non-neural origin. They are usually considered noise in a brain 

potentials investigation.  

 

A more recent taxonomy proposed in 1992 by Bozinovska 

[Bozinovska et al 1992] introduced a difference between 

Evoked Potentials (EP) and Event Related Potentials (ERP). It 

also introduced anticipatory potentials (AnP) and Expectancy 

Potentials (ExP). Figure 1 shows this taxonomy. Event Related 

Potentials are divided into pre-event and post-event. Pre-event 

potentials and named Anticipatory Potentials (AnP) while 

post-event potentials are the Evoked Potentials (EP). 
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Figure 1. A taxonomy of brain potentials 

 

Anticipatory Brain Potentials (AnP)  are divided into 

Preparatory Potentials (PrP) and show preparation for a 

willing action (an example is the Bereitschaftspotential – BP) 

[Kornhuber and Deecke, 1965], and Expectatory Potentials 

(ExP) that show expectation for an event (an example is the 

Contingent Negative Variation – CNV) [Walter et al, 1964].  

 

This paper focuses on the CNV potential. Figure 2 shows the 

morphology of a CNV potential, following the convention that 

the negative shift is shown as directing upwards. The signal 

shown was obtained in the investigations where sound (beep) 

stimuli were used.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Morphology of a CNV potential 

 

3 THE CNV FLIP-FLOP PARADIGM 

 

CNV appears in the so-called CNV paradigm, introduced by a 

research team led by Walter [Walter et al, 1964]. In this 

experimental paradigm, the EEG is measured in a standard 

reaction-time paradigm, in which the subject is presented with 

two stimuli: S1, which is short in duration and serves as a 

signal, that a next, S2, will follow, which is longer and needs 

to be interrupted by the user (usually by pressing a button). 

The user is instructed to press the button (i.e. stop S2) as 

quickly as possible. After averaging over several trials, a 

specific shape forms between S1 and S2, which is the CNV 

potential. Several modifications of the original CNV paradigm 

have been proposed, and the CNV potential itself has been 

extensively studied [Tecce and Cattacach, 1993]. An example 

of a CNV paradigm modification is the probability-driven 

appearance of S2 [Bozinovska et al, 1985]. 

 

The modification of the original CNV paradigm used in this 

work is named CNV flip-flop paradigm and is obtained by 

adding a feedback loop to the paradigm. The feedback is 

introduced by monitoring the appearance and disappearance of 

the CNV potential and using that information to switch the 

imperative stimulus S2 off and on. The recognition of a CNV 

appearance would result in the lack of a need for the subject to 

react, which would eventually lead to a decline of his/her 

expectancy, and thus a decay of the CNV potential. The 

computer would recognize this and consequently switch on the 

S2 stimulus again, which would in turn force the subject to 

expect and react again, thus redeveloping his/her CNV 

potential, and so on. The experiment would go on as long as 

there were trials available. While the subject’s reaction is 

 



usually measured by him/her pressing a button, it has been 

shown that the CNV flip-flop paradigm does not necessarily 

need a press button part [Božinovski et al 2007]. The CNV is 

generated by an expectancy process in the brain which can be 

monitored, and this means that the paradigm truly bypasses the 

need for motor organs. In 2005, it was realized that the 

anticipatory potentials could be utilized in the brain-computer 

interface research. [Božinovski 2005, Božinovski et al 2006, 

Božinovski et al 2007]. Other groups have joined the research 

in anticipation driven brain computer interface [Garipelli et al 

2008] and anticipatory potentials related to the theory of 

anticipatory systems [Kadim 2007]. 

 

4 BRAIN-ROBOT INTERFACE 

 

The original brain-robot interface paradigm [Bozinovski 1988] 

includes an EEG signal acquisition, a software system for the 

recognition of the desired signal (including feature extraction), 

and an interface towards a controlled device. The research in 

expectation based brain-robot interface presented in this work 

includes the experimenter and points out the CNV oriented 

signal processing (Figure 3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. An expectation based brain-robot interface 

As Figure 3 shows, the brain-machine interface used contains 

a brain signals acquisition unit, a signal processing part, and 

an application interface, in this case a robot interface.  

 

5 BIOSIGNAL PROCESSING PART 

 

The biosignal preprocessing part of the BMI software filters 

the artefacts (such as EOG and electric current noise) from the 

recorded EEG. The feature extraction part extracts the Event 

Related Potential (ERP). The problem to be solved is the time-

varying nature of the ERP. Since the paradigm requires that 

the obtained signal will form towards and decay from its CNV 

shape, a classical averaging technique is not suitable. 

Therefore, an adaptive filter was used [Božinovski 2005]. 

Another signal processing module is the CNV recognition 

part, which should recognize that the obtained ERP has a 

shape of a CNV. Since the expected CNV is a ramp-like 

signal, the pattern recognition software looks for parameters of 

that ramp. The parameters that are computed are the slope of 

the regression angle and amplitude of the ERP at the vicinity 

of S2. The ERP baseline is computed from the values of the 

ERP signal from the beginning of the trial until the appearance 

of the S1 stimulus.  

 

In normal subjects, the CNV flop-flop paradigm generates 

oscillations of the CNV amplitude. The CNV flip-flop curve 

was used as a triggering process for a sequence of robot 

behaviors in the Brain-Robot Interface research.  

 

6 ROBOT CONTROL ARCHITECTURE 

 

A robot control architecture is used that contains predefined 

behaviors. Behavior-based robotics [Arkin 1998] is currently 

widely used approach in robot control. The architecture 

consists of a set of preprogrammed behaviors, a triggering 

system for a particular behavior, and a behavior selection 

system. In BRI paradigms, the triggering mechanism is the 

brain signal recognition. The behavior based BRI architecture 

used here is shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The BRI approach using behavior based robot 

control architecture 

As can be seen from Figure 4, behaviors are triggered by a 

BCI event recognition system. An example of the set of 

behaviors can be a set of two hardwired behaviors 

{FOLLOW_LINE, STOP}, which was used in [Bozinovski et 

al 1988]. The robot had a default behavior of following a black 

line drawn on the floor. When a behavior triggering system 

recognized an increased intensity of an alpha rhythm, the 

STOP behavior was executed. If the alpha rhythm intensity 

decreased, the default behavior was resumed.  

 

In this research, a robotic arm solving the Towers of Hanoi 

problem was considered, which had already been used 

[Božinovski 2005]. The sketch is given in Figure 5. Given a 

set of disks with different diameters, a tower is defined as a 

disk stack in which a smaller disk is always above a larger 

one. Three spots are given – A, B, and C. If the initial tower is 

in the spot A, the task is to move it to the spot C, using a 

“buffer” tower in the spot B. Note that at each step of the task 

 

 



the concept of a tower is preserved, i.e. a smaller disk is 

always above a larger one.  
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Figure 5. The Towers of Hanoi problem for a robotic arm 

 

The Towers of Hanoi is a well known problem in theory of 

algorithms and artificial intelligence, and it is known that, to 

move a tower of d disks, 2
d
-1 movements of the individual 

disks are required. It is also pointed out that the state space of 

this problem has a fractal structure [Bozinovski 1994]. The 

sequence of behaviors to be preprogrammed for a two disk 

stack is (AtoB,  AtoC, BtoC). If the height of a particular disk 

in the stack is denoted, the sequence can be represented as 

(A2toB1, A1toC1, B1toC2). Once the problem is decomposed 

into a sequence of robot behaviors, a brain process is needed, 

that will generate a control sequence for executing the 

behaviors.  Indeed, the CNV flip-flop paradigm generates such 

a sequence. 

 

7 MATERIALS AND METHODS 

 

The equipment used consists of a 4-channel biopotential 

amplifier, a PC Windows based computer, and a 6-degrees-of-

freedom robotic arm. The CNV flip-flop paradigm part 

recognizes series of appearances and disappearances of the 

CNV potential, and triggers the behavior execution part, which 

moves the robotic arm towards the completion of the Towers 

of Hanoi task. The robot interface consists of a USBtoCOM 

cable connecting a robot controlled by a servo controller. Each 

robot behavior is interfaced with the triggering signal that 

comes from the CNV flip-flop paradigm. The subject is 

connected to the biopotential amplifier with EEG electrodes 

placed on Cz and mastoid, while the forehead is the ground. A 

photo of the experimental setup is shown in Figure 6.  

 

8 SOFTWARE 

 

Custom software was developed for the experimental research, 

written in C#. The signal processing part is described above. 

The robot control software counts the events of CNV 

appearance and disappearance. The initial state of noCNV 

triggers no robot movement. The first CNV appearance is 

named CNV1 and triggers the Behavior1. The CNV 

disappearance is named CNV2 and triggers Behavior2. The 

events are denoted by CNVk where if k is an odd number it is 

a CNV appearance while an even k means CNV 

disappearance. Figure 7 shows the graphical user interface 

which the experimenter observes during each trial.  

 

 
Figure 6. Experimental setup: subject, electrodes, robotic 

arm, biopotential amplifier, two disk Tower of Hanoi, and 

computer. 

 

The screen shows six channels out of which the first four are 

acquisition channels and the last two are mathematically 

computed channels. The first channel is the EEG acquisition 

channel, the second is the EMG acquisition from the arm 

pressing the button, the third is the EOG signal channel, and 

the fourth is the press-button recognition channel. The sixth 

channel is the event related potential extracted so far. If an 

appearance or disappearance of CNV is recognized on that 

channel, the signal is given to the robot to move and that is 

recorded on the fifth channel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. An experimental trial with CNV control of behavior-

based robotics 

 



The rightmost part of the screen is used for control of the 

exeperiment, including subject data and the name of the file 

where the experiment is stored.  

 

9 EXPERIMENTAL INVESTIGATION: RESULTS 

 

The experimental investigation described here is just a proof-

of-concept series of experiments. Four experiments were 

performed on one subject different than the 

experimenter/programmer. A two-disk Tower of Hanoi 

requires three behaviors to complete the task, which means 

that the subject needs to produce a CNV1-CNV2-CNV3 

sequence in the CNV flip-flop paradigm to complete the task. 

Each experiment contains 30 trials. Table 1 summarizes the 

experiments. 

 

Table 1. Proof-of-concept series of experiments 

 Experiment 

1 2 3 4 

Event   Behavior Trial number 

CNV1  Behavior1 16 12 11 6 

CNV2  Behavior2 22 23 12 19 

CNV3  Behavior3 26 29 22 22 

CNV4   29 26 

CNV5    30 

 

Each entry in Table 1 is the trial number in which the event 

occurred. For example, in the first experiment, the first 

appearance of CNV was in trial 16, the disappearance was in 

trial 22, and the second CNV appearance was in trial 26. As 

can be seen from Table 1, in each experiment, within 30 trials 

the two-disk Tower of Hanoi task was executed successfully 

using a BRI. Table 1 also suggests that a learning process is 

taking place, in which the subject in each new experiment 

tends to develop its first CNV potential earlier, and also tends 

to increase the number of appearances and disappearances of a 

CNV potential.  

 

10 BRAIN-MACHINE INTERFACE AS A 21 

CENTURY DYNAMIC TECHNOLOGY 

 

The 21st century shows advancement and maturity in the field 

of BMI. Various types of brain signals are used. Besides the 

above described research of using anticipatory brain 

potentials, other types of brain signals used are the frequency 

bands of spontaneous EEG signals. Evoked potentials such as 

visual evoked potentials and potentials due to imaginary 

movements are also used.  

 

Here, some of the achievements in the field in the 21
st
 century 

will be mentioned. The concept of imaginary voluntary 

movement-related potentials (IMMRP) was proposed by 

Mason and Birch [2000].  The evoked potential P300 was used 

in a BCI paradigm by Donchin et al [2000]. Anticipatory 

potentials in a BCI paradigm were introduced by Božinovski 

[2005]. 

 

Research in invasive BMIs continued on animals controlling 

robotic arms [Lebedev et al 2005]. Invasive motor 

neuroprosthesis research continues in humans, with the aim to 

either restore movement in the case of subject paralysis or 

assist with computers or robot arms. Brain implants were used 

in case of tetraplegic patients [Hochberg et al 2006].  

 

A new approach was introduced with transfected neural cells. 

Cells are introduced in a somatosensory cortex of a mouse 

which moves freely. Decision of where to move is influenced 

by a light signal, which affects the transfected cells [Huber et 

al 2008].  

 

Partially invasive Brain Computer Interface was introduced. 

Instead of implanting electrodes inside the brain, electrodes 

are implanted above the brain but below the skull. The term 

Electrocorticography (ECoG) is used for such measurements. 

 

Noninvasive technologies mostly rely on electric signals from 

the skull; this technique is known as electroencephalography 

(EEG). Other technologies are also used, such as Near Infrared 

Sensing (NIRS), functional Magnetic Resonance Imaging 

(fMRI) and magnetoencephalography (MEG). New 

technologies enabled decoding visual images from inside the 

brain [Muyawaki et al 2008].  

 

A new direction is opened in interfacing cultured neural cells 

with external devices. Recently, a neural network cultured in a 

petri dish was used to generate simulated actions of pitch and 

yaw for a flight simulator [Mazzarenta et al 2007].  

 

Commercially available products, which utilize non-invasive 

technologies, are already on the market. As examples, the 

company G.TEC is offering the BCI2000 system, which is 

used for training purposes in BCI area, and the company 

Emotiv is selling a video game controller that uses 

electromagnetic sensors.  

 

11 CONCLUSION 

 

Although brain-machine interface research started in the 

1970s, the 21
st
 century is actually the era of this field for 

science and technology. A brief overview of the state of the art 

of the technology is presented. In particular, the paper gives 

description of an anticipation based brain-machine interface. 

The considered BMI uses the CNV potential and in a feedback 

loop generates a curve that triggers behaviors needed to solve 

a benchmark problem in computer science, in this case the 

Towers of Hanoi.  

 

REFERENCES 

W. Amai, J. Fahrenholtz, C. Leger, Hands-Free Operation of a Small Mobile 

Robot,” Autonomous robots 11, pp. 69-76, 2001 
R. Arkin, Behavior-Based Robotics, The MIT Press, 1998 

H. Berger, Über das Еlektrenkephalogramm des Menschen,” Arch. Psychiat. 

Nervenkr. vol 87, pp. 527-570, 1929 



R. Brooks. A robust layered control system for a mobile robot. IEEE Journal 

of Robotics and Automation 2: pp. 14-23, 1986 

L. Bozinovska, V. Isgum, B. Barac, Electrophysiological and 

phenomenological evidence of the expectation process in the reaction 

time measurements. Yugoslavian Physiologica and Pharmacologica 

Acta, pp. 21-22, 1985 
L. Bozinovska, S. Bozinovski, G. Stojanov, Electroexpectogram: 

Experimental Design and Algorithms, Proc. IEEE International 

Biomedical Engineering Days, pp. 58-60, Istanbul, 1992 
А. Božinovski, CNV Flip-flop as a Brain-Computer Interface Paradigm, Proc. 

7th Conf. of the Croatian Association of Medical Informatics, pp. 149-

154, Rijeka, 2005 
A. Božinovski, Control Software for the Towers of Hanoi Problem Solving 

Using Manipulative Robot – A Case Study, Proc. 2nd Balkan Conf. in 

Informatics, pp. 366-378, Ohrid, 2005 

A. Božinovski, L. Božinovska, S. Tonković. A Cognitive Wave From a 

Human Brain In a Brain-Computer Interface Paradigm. Proc. 10th 

International Conference on Cognitive and Neural Systems, Boston, p. 

102, 2006 
A. Božinovski, L. Božinovska, S. Tonković, A CNV Anticipatory Potential 

Related Brain-Computer Interface, Proc. 11th International Conf. on 

Cognitive and Neural Systems, p. 43,  Boston, 2007 

A. Božinovski, S. Tonković, V. Išgum, R. Magjarević, L. Božinovska. 

Electrophysiology of expectancy process: Processing the CNV potential. 

Proc. 5th Internat. Conf. Informatics and Information Technology, pp. 

129-137, Bitola, 2007 
A. Božinovski, L. Božinovska , Anticipatory Brain Potentials in a Brain-

Robot Interface Paradigm, Proc. 4th International IEEE EMBS Conf. on 
Neural Engineering, pp. 451-454, Antalya, 2009 

S. Bozinovski, L. Bozinovska, M. Setakov Mobile robot control using alpha 

wave from the human brain (In Croatian) Proc. Symp. JUREMA, pp. 
247-249, Zagreb, 1988 

S. Bozinovski, M. Sestakov, L. Bozinovska Using EEG Alpha Rhythm to 

Control a Mobile Robot, Proc 10th Annual Conf. of the IEEE 
Engineering in Medicine and Biology Society, Vol 3, pp. 1515-1516, 

New Orleans, 1988 

S. Bozinovski, Mobile Robot Trajectory Control: From Fixed Rails to Direct 
Bioelectric Control, in O. Kaynak (Ed.) Proc IEEE International 

Workshop on Intelligent Motion Control, vol 2, pp. 463-467, Istanbul, 

1990 

S. Bozinovski. The Artificial Intelligence (In Macedonian) Gocmar Press, 

Skopje, 1994 

J. K. Chapin., K. A. Moxon., R. S. Markowitz, M. A. L. Nicolelis., Real-Time 

Control of a Robot Arm Using Simultaneously Recorded Neurons in the 
Motor Cortex, Nature Neuroscience., vol. 2, pp. 664–670, 1999 

P. J. Cilliers, A. J. W. Van Der Kouwe, A VEP-Based Computer Interface for 

C2-Quadriplegics, Proc. of the 15th Annual International Conf. of the 
IEEE,  p. 1263, 1993 

A. Craig, L. Kirkup, P. McIsaak, A. Searle, The Mind as a Reliable Switch: 

Challenges of Rapidly Controlling Devices Without Prior Learning, in S. 
Howard, J. Hammond., G. Lindgaard (eds.) Human Computer 

Interaction, Chapman and Hall,  pp. 4-10, 1997 

E. Donchin, K. Spencer, R. Wijesinghe, The Mental Prosthesis: Assessing the 
Speed of a P300-Based Brain-Computer Interface, IEEE Trans. Rehab. 

Eng.  8, pp. 174-179, 2000 

G. Garipelli, R. Chavarriaga, J. de R. Millan. Recognition of anticipatory 

behavior from human EEG, Proc 4th Int. Brain-computer interface 
workshop, Gratz, 2008 

L. Hochberg, M. Serruya, G. Friehs, J. Mukand, M. Saleh, A. Caplan, A. 

Branner, D. Chen, R. Penn, J. Donoghue. Neuronal ensemble control of 
prosthetic devices by a human with tetraplegia Nature 442(7099), pp. 

164-171, 2006 

D. Huber, L. Petreanu, N. Ghitani, S. Ranade, .T. Hromadka, Z. Mainen, K. 
Svoboda, Sparse optical microstimulation in barrel cortex drives learned 

behavior in freely moving mice. Nature 451(7174), pp. 61-64, 2008. 

H. Kadim. Modelling of Anticipatory Behaviour for Self-Control and 

Adaptability with Applications to Autonomous Systems Proc. IEEE 
ECSIS Symposium on Bio-inspired, Learning, and Intelligent Systems 

for Security, pp. 91-94, 2007 

H. Kornuber, L. Deecke, Hirnpotentialänderungen bei Willkürbewegungen 
und passiven Bewegungen des Menschen: Bereitschaftspotential und 

reaferente Potentiale, Pflügers Arch. 284, pp.1-17, 1965 

M. Lebedev, J. Carmena, J. O’Doherty, M. Zachenhouse, C. Henriques, J. 
Principe, M. Nicolelis, Cortical ensemble adaptation to represent 

velocity of an artificial actuator controlled by a brain-machine interface. 

Journal of Neuroscienece 25(19), p. 4681, 2005 
S. Mason, G. Birch, A Brain-Controlled Switch for Asynchronous Control 

Applications, IEEE Trans. Biomedical Engineering 47 (10), pp. 1297-

1307, 2000 
A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. 

Markram, M. Prato, L. Ballerini, Interfacing Neurons with Carbon 

Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in 
Cultured Brain Circuits,  Journal of Neuroscience 27 (26), pp. 6931, 

2007 

Y. Muyawaki, H. Uchida, O. Yamashita, M. Sato, Y. Morito, H. Tanabe, N. 
Sadato, Y. Kamitani. Decoding the mind’s eye: - Visual image 

reconstruction from human brain activity using a combination of 

multiscale local image decoders. Neuron 60(5), pp. 915-929, 2008 

G. Pfurtsheller, C. Neuper. Motor imagery and direct brain-computer 

communication. Proc. IEEE, 89, pp. 112-1134, 2001 

A. Searle, Electrode performance and signal processing strategies for 

discrimination of EEG alpha waves: Implementations for environmental 
control by unconstrained subjects without training. PhD. Thesis, 

Department of Applied Physics and Technology, Sydney, 2000 

E. Sellers, D. Krusienski, T. McFarland, T. Vaughan, J. Wolpaw, A P300 
Event-Related Potential Brain-Computer Interface (BCI): The Effects of 

Matrix Size and Inter-Stimulus Interval on Performance, Biological 

Psychology 73(3), pp. 242-252, 2006 
J. Tecce, L. Cattanach, Contingent Negative Variation (CNV), in E. 

Niedermeyer and F. Lopes da Silva (eds.) Electroencephalography: 

Basic Principles, Clinical Applications and Related Fields (3rd ed.) 
Williams and Wilkins, pp. 887-910, 1993 

J. Vidal, Toward Direct Brain-Computer Communication, Annual Review of 

Biophysics and Bioengineering, pp. 157-180, 1973 
G. Walter, R. Cooper, V. Aldridge, W. McCallum, Contingent Negative 

Variation: An Electric Sign of Sensory-Motor Association and 

Expectancy in The Human Brain, Nature, 1964 
I. Wickelgren,  Tapping the Mind, Science vol. 299, pp. 496-499, 2003 

J. Wolpaw, D. McFarland, G. Neat, C. Forneris, An EEG-based brain-

computer interface for cursor control, Electroencephalography and 

Clinical Neurophysiology, vol. 78, no. 3, pp. 252-259, March 1991 

 

 

 
 


